
Review on Data Encryption in Hadoop Distributed

File System Using AES Algorithm with Key

Management
Vrushali Patil, Rajan Jamgekar, Namdev Sawant

Computer Science and Engineering Department, Solapur University, Solapur, India.

SKN Sinhgad College of Engineering, Korti, Pandharpur, India.

Abstract—Hadoop is an java base programming framework

that supports the processing and storage of extremely

large data sets in a distributed computing environment.
Data security is an important issue as far as storage of

sensitive data is concerned. Hadoop by default does not

contain any security mechanism but as it has grown very

much and it is the first choice to store and manage data it is

necessary to introduce security solutions to Hadoop in order to

secure the important data in the Hadoop environment.

Encryption of large amount of data stored in HDFS is actually

a process which takes a lot of time and this time consuming

process of encryption should be controlled by encrypting the

data using a parallel method. This study discusses a new

technique to perform encryption in parallel using AES

algorithm.

Keywords— Hadoop, Hadoop distributed file systems (HDFS),

Data Encryption, MapReduce and AES algorithm

I. INTRODUCTION

Hadoop is an open-source framework that allows to

store and process big data in a distributed environment

across clusters of computers using simple programming

models. It is designed to scale up from single servers to

thousands of machines, each offering local computation and

storage. Hadoop has been developed under an Apache

License. Hadoop is a framework of tools which supports

running application on big data and it is implemented in

Java. Hadoop consists of two main modules: the

MapReduce and the Hadoop Distributed File System[6]

Hadoop File System was developed using distributed

file system design. It runs on commodity hardware. HDFS

holds very large amount of data and provides easier access.

To store such huge data, the files are stored across multiple

machines. These files are stored in redundant fashion to

rescue the system from possible data losses in case of

failure. HDFS also makes applications available to parallel

processing.[3]

MapReduce is a framework using which we can write

applications to process huge amounts of data, in parallel, on

large clusters of commodity hardware in a reliable

manner.It is a processing technique and a program model

for distributed computing based on java.The major

advantage of MapReduce is that it is easy to scale data

processing over multiple computing nodes.[2]

A. Architecture of HDFS :

HDFS has a master/slave architecture. An HDFS cluster

consists of a single NameNode, a master server that

manages the file system namespace and regulates access to

files by clients.In addition, there are a number of

DataNodes, usually one per node in the cluster, which

manage storage attached to the nodes that they run on.

HDFS exposes a file system namespace and allows user

data to be stored in files. Internally, a file is split into one or

more blocks and these blocks are stored in a set of

DataNodes. The NameNode executes file system

namespace operations like opening, closing, and renaming

files and directories. It also determines the mapping of

blocks to DataNodes. The DataNodes are responsible for

serving read and write requests from the file system‟s

clients. The DataNodes also perform block creation,

deletion, and replication upon instruction from the

NameNode.[3]

 Figure 1: HDFC Architecture[6]

The NameNode and DataNode are pieces of software

designed to run on commodity machines. These machines

typically run a GNU/Linux operating system (OS). HDFS is

built using the Java language; any machine that supports

Java can run the NameNode or the DataNode software.

Usage of the highly portable Java language means that

HDFS can be deployed on a wide range of machines. A

typical deployment has a dedicated machine that runs only

the NameNode software. Each of the other machines in the

cluster runs one instance of the DataNode software. The

Vrushali Patil et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 9 (3) , 2018, 91-93

www.ijcsit.com 91

ISSN:0975-9646

architecture does not preclude running multiple DataNodes

on the same machine but in a real deployment that is rarely

the case.

II. BIG DATA HADOOP ‘S TRADITIONAL SECURITY

Originally Hadoop was developed without security in

mind, no security model, no authentication of users and

services and no data privacy, so anybody could submit

arbitrary code to be executed. Although auditing and

authorization controls (HDFS file permissions and ACLs)

were used in earlier distributions, such access control was

easily evaded because any user could impersonate any other

user. Because impersonation was frequent and done by

most users, the security controls measures that did subsist

were not very effective. Later authorization and

authentication was added, but that to have some weakness

in it. Because there were very few security control measures

within Hadoop ecosystem, many fortuity and security

incidents happened in such environments. Well-meant users

can make mistakes (e.g. deleting massive amounts of data

within seconds with a distributed delete). All users and

programmers had the same level of access privileges to all

the data in the cluster, any job could access any of the data

in the cluster, and any user could read any data set [4].

Because MapReduce had no concept of authentication or

authorization, an impish user could lower the priorities of

other Hadoop jobs in order to make his job complete faster

or to be executed first – or worse, he could kill the other

jobs.[1]

B. Security Issue :

Hadoop present security issues for data centre managers

and security professionals. The security issues are as below

 1. Fragmented Data: Big Data clusters contain data that

allow multiple copies moving to-and-fro various nodes

ensuring redundancy and resiliency. The data that is

available for fragmentation and can be shared across

multiple servers more complexity is added as a result of the

fragmentation which poses a security issue due to the

absence of a security model.

2. Distributed Computing: the data source is not fixed

resources are processed where available, these lead to large

levels of parallel computation. Complicated environments

are created that are at high risks of attacks than their

counterparts of repositories that are centrally managed and

monolithic.

3. Controlling Data Access: big data only provides access

control at schema level. There is no finer granularity in

addressing proposed users in terms of roles and access

related scenarios.

4. Node-to-node communication: Hadoop don‟t implement

secure communication; they use the RPC (Remote

Procedure Call) over TCP/IP.

 5. Client Interaction: Communication of client takes place

with resource manager, data nodes. Clients that have been

compromised tend to propagate malicious data or links to

either service.

 6. Virtually no security: big data stacks where designed

with no security in mind. There is no security for common

web threats too.[4]

III. SOLUTION FOR BIG DATA SECURITY IN HADOOP

The security features Hadoop to prevent malicious user

impersonation. The Hadoop daemons leverage Kerberos to

perform user authentication on all remote procedure calls

(RPCs). Group resolution is performed on the Hadoop

master nodes, NameNode, JobTracker and

ResourceManager to guarantee that group membership

cannot be manipulated by users. Map tasks are run under

the user account of the user who submitted the job, ensuring

isolation there. In addition to these features, new

authorization mechanisms have been introduced to HDFS

and MapReduce to enable more control over user access to

data.[4]

C. Encryption In HDFS :
HDFS encryption implements transparent, end-to-end

encryption of data read from and written to HDFS blocks

across your cluster. Transparent means that end-users are

unaware of the encryption/decryption processes, and end-

to-end means that data is encrypted at-rest and in-transit.[12]

a. Background :

Encryption can be done at different layers in a traditional

data management software/hardware stack. Choosing to

encrypt at a given layer comes with different advantages

and disadvantages.

1. Application-level encryption: This is the most secure and

most flexible approach. The application has ultimate

control over what is encrypted and can precisely reflect

the requirements of the user. However, writing

applications to do this is hard. This is also not an

option for customers of existing applications that do

not support encryption.[10]

2. Database-level encryption:Similar to application-level

encryption in terms of its properties. Most database

vendors offer some form of encryption. However, there

can be performance issues. One example is that indexes

cannot be encrypted.[10]

3. Filesystem-level encryption. This option offers high

performance, application transparency, and is typically

easy to deploy. However, it is unable to model some

application-level policies. For instance, multi-tenant

applications might want to encrypt based on the end

user. A database might want different encryption

settings for each column stored within a single file.[10]

4. Disk-level encryption. Easy to deploy and high

performance, but also quite inflexible. Only really

protects against physical theft.

5. HDFS-level encryption fits between database-level and

filesystem-level encryption in this stack. This has a lot

of positive effects. HDFS encryption is able to provide

good performance and existing Hadoop applications

are able to run transparently on encrypted data. HDFS

also has more context than traditional filesystems when

it comes to making policy decisions.HDFS-level

encryption also prevents attacks at the filesystem-level

and below (so-called “OS-level attacks”). The

operating system and disk only interact with encrypted

bytes, since the data is already encrypted by HDFS.[10]

Vrushali Patil et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 9 (3) , 2018, 91-93

www.ijcsit.com 92

b. Architecture :
Figure 2 indicates operation that spare each piece into

HDFS, customer split every record into settled size square

and scrambles it before transfer to Hadoop document

framework. It is accounted for that encryption and

unscrambling can be actualized essentially by utilizing Java

class [1]. Customers, itself perform encryption utilizing

AES calculation on the CPU and exchange encoded piece

to HDFS (DataNode). At that point collector DataNode

(First DataNode where piece store) reproduce hinder into

two different DataNodes.[1]

Figure 2: Writing a file by adding an encryption[1]

D. DECRYPTION IN HDFS

Information pieces are composed by customer to DataNode

successively, however amid execution of MapReduce

occupation numerous squares areperused (decoded) parallel

at TaskTracker. Figure 3 demonstrates that MapTask read

and encode information obstructs at TaskTracker utilizing

AES encryption strategy. It is accounted for that various

MapTasks are executing in Hadoop at specialist

destinations. HDFS bolsters compose once-read-many

model, it is accounted for that simultaneous decoding of

HDFS square well reasonable for some MapReduce

employments[1]

Figure 3: A MapReduce job that read an encrypted

file[1]

IV. FUTURE SCOPE

Enormous information contains delicate and private data,

so as to secure this huge volume that put away at various

product equipment, important to actualize confirmation to

check client or framework personality. Approval is valuable

for giving access control benefits to client or framework;

additionally the ACL's are aides for document consent.

OAuth 2.0 is great decision for both validation and

Authorization. Furthermore, review trails utilized for

following every client action. OAuth 2.0 token effective

component that bolster AES to give information

classification and uprightness among various client.

V. CONCLUSION

 In the period of Big Data, where information is gathered

from various sources, security is a measure issue, as there

no any settled wellspring of information and no sort of

security instrument. Hadoop received by different

businesses to process such information, requests solid

security arrangement. Consequently verification, approval

and encryption or decoding strategies are much supportive

to secure Hadoop record framework

REFERENCES

[1] Seonyoung Park and Youngseok Lee ―Secure Hadoop with

Encrypted HDFS”

[2] Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on

Large Cluster. In:OSDI (2004)

[3] Ghemawat, S., Gobioff, H., Leung, S.: The Google File System. In:

ACM Symposium onOperating Systems Principles (October 2003)

 [4] O„Malley, O., Zhang, K., Radia, S., Marti, R., Harrell, C.: Hadoop

Security Design,Technical Report (October 2009)

[5] White, T.: Hadoop: The Definitive Guide, 1st edn. O„Reilly Media

(2009)

[6] Hadoop, http://hadoop.apache.org/

[7] Jason Cohen and Dr. Subatra Acharya ―Towards a Trusted Hadoop

Storage Platform:Design Considerations of an AES Based

Encryption Scheme with TPM Rooted KeyProtections‖ (2013)

[8] Lin, H., Seh, S., Tzeng, W., Lin, B.P. ‖ Toward Data Confidentiality

via Integrating sfsfHybrid Encryption Schemes and Hadoop

Distributed FileSystem‖ (2012)

[9] Thanh Cuong Nguyen, Wenfeng Shen, Jiwei Jiang and Weimin

Xu ―A Novel Data Encryption in HDFS‖ (2013)

[10] Devaraj Das, Owen O„Malley, Sanjay Radia and Kan

Zhang ―Adding Security to Apache Hadoop‖

[11] Songchang Jin, Shuqiang Yang, Xiang Zhu, and Hong Yin ―Design

of a Trusted File System Based on Hadoop “ 2013

[12] Advanced Encryption Standard,

http://en.wikipedia.org/wiki/Advanced_ Encryption_Standard [13]

Sharma Y. ; Kumar S. and Pai R.M; ―Formal Verification of OAuth

2.0 Using Alloy Framework

Vrushali Patil et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 9 (3) , 2018, 91-93

www.ijcsit.com 93

